

Resolution Optimization for i-Line Litho

Nicolas Dionisio/Holger Sailer 11.04.2024

- Motivation
- Basics
- Optimization of Resist thickness
- Resolution Enhancement by double patterning
 - Stepper: Litho-Etch-Litho-Etch
 - Laser: Litho-Litho-Develop
- Conclusion

Motivation

Laser-Maskenschreiber ULTRA der Firma Heidelberg Instruments

- Optical Litho Tools @ IMS
 - Wafer-Stepper Canon FPA 3030i5a
 - Hg lamp i-line $\lambda = 365 \text{ nm}$
 - Laser Writer HIMT ULTRA
 - DPSS Laser $\lambda_{
 m eff} = 355\,
 m nm$
- Resolution limited by optical wavelength for both tools
- Change to shorter wavelength would mean:
 - New tools (€€)
 - <u>New resists, including optimization an</u> <u>integration</u>
 - <u>Less flexibility</u>
- ->Make best out of given tool platform

Basic: optical Lithography

Geometric Optic

Image reduction 5:1

Resolution Limit Lines/Spaces

- More than one diffraction order is necessary to resolve the grating
- Resolution limit is given by:

$$-d_{min} = k_1 \cdot rac{\lambda}{NA}$$

- Numeric Aperture (NA)
 - $-NA = n \cdot \sin \theta_{max}$

Resolution Lines/Spaces

- The Smallest Pitch is limited by diffraction limit and optics
- The smallest linewidth is also defined by resist chemistry, dose and resist thickness

Resolution Lines/Spaces

Pattern Collapse is triggered by high aspect ratio

<u>Wafer-Stepper</u>:

- $-\lambda = 365 \,\mathrm{nm}$
- -NA = 0,63 $-d_{min} = 0,5 \cdot \frac{\lambda}{NA} = 290 nm$

Parameter: $d_{\text{Lack}} = 1067 \text{ nm}; H = 1700 \text{ J m}^{-2}; F = 0 \text{ }\mu\text{m}$

Pattern	$CD_{\text{line}}/\text{nm}$		CD_{spa}	nce/nm	$CD_{\rm pitch}/{\rm nm}$	
1 attern	target	mean	target	mean	target	mean
70	700	646	700	759	1400	1405
60	600	542	600	664	1200	1206
55	550	494	550	613	1100	1107
50	500	442	500	563	1000	1005
45	450	389	450	516	900	905
40	400	342	400	462	800	804
35	350	302	350	402	700	704
30	300	267	300	336	600	603
25	250	-	250	-	500	-
20	200	-	200	-	400	-
15	150	-	150	-	300	-

Optimization of resist thickness

O data fitted curve

00

900

950

Simulated by LAB

750

Resist Thickness (nm)

800

850

0

measured

Resolution Enhancement Techniques

Double Patterning

- Reduction of Pattern Density by separating exposure into two complementary masks:
 - 1. Mask:
 - Blue Pattern
 - 2. Mask
 - Red Pattern

Wafer-Stepper: Double Patterning

Integration approach: Litho-Etch-Litho-Etch

Wafer-Stepper: Double Patterning

 \approx 82 nm

Wafer-Stepper: Double Patterning

Introduction of Zero Mask Layer with depper etched alignment marks to increase contrast

Double Patterning with two masks half pitch \approx 250 nm

Single Patterning resist exposure half pitch \approx 250 nm

Laser Writer: Write Strategy

- Instead of Masks: Modulation of Light Intansity within one Write Stripe using Spatial Light Modulators (SLM)
- Use of Grating Light Valves (GLV)
- Instead of Hg Lamp (365nm) use of DPSS Laser (355nm)

i kins chips

Resolution Limit: Laser writer

- Write stripe is created by two pixel array writing in parallel
- Size of 1 pixel depending und write lens. In this case 400nm
- Finer adress grid and resolution by interpolation and grayscaling of pixels
- Resolution Limit is influenced by
 - Diffraction
 - Interaction of neighboring pixels due to coherent light
 - Pixel size

	onver	tierte	Dat	ten:	
--	-------	--------	-----	------	--

Schreibrichtung

Konvertierte Daten:

0 0

0 0 0

Simulated and measured Swing Curves

Optimization of Resist Thickness

Institut für Mikroelektronik Stuttgart

Laser Writer: Double Exposure

- For high pattern densities, resolution is limited by pixel size
- => no areas with 0% intensities

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	Schreibrichtung
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
1	1	1	1	1	1	1	1	1	
									-

Konvertierte Daten:

0.5 0.5

0.5 0.5 1

Layoutausschnitt:

Laser Writer: Double Exposure

- Reducing Pattern density by separatin design into two separate exposures
- No wafer unload between the two exposures, no alignment necessary
- => Almost no Overlay error, defined by stage repeatebility, <10nm

Vertical Structures

Institut für Mikroelektronik Stuttgart

Horizontal structures

1:1 pattern (single exposure)

2x 1:3 pattern (overlay exposure)

Conclusion

- Optimization of optical litho processes for stepper and laser
 - Resist thickness
 - Exposure strategy
- LAB gives accurate results for swing curve and bossung plot simulations
- Litho-Etch-Litho-Etch approach enables patterns smaller than diffraction resolution limit
- Resolution of Laser direct writer can be improved by separation of exposure

into two steps: 500nm Lines Spaces 400nm pixel size!